Аутофагия: история исследований и Нобелевская премия 2016

Аутофагия (в переводе с греческого языка ‘самопоедание’) — это процесс утилизации органелл и макромолекул в клеточных компартментах, образующихся при слиянии аутофагосом с лизосомами. В ходе аутофагии клетка адаптируется к тяжелым условиям. Когда недостаточен приток питательных веществ извне, клетка жертвует частью собственных макромолекул и органелл, чтобы получить элементы (мономеры), из которых могут быть синтезированы новые белки, нуклеиновые кислоты, липиды и углеводы, и существовать дальше. Процесс аутофагии важен для удаления из клетки поврежденных компонентов, например белковых агрегатов. В ходе этого процесса в клеточной цитоплазме поврежденные макромолекулы и органеллы попадают в специализированный компартмент, в котором расщепляются до малых молекул. Эти мономеры могут стать строительными блоками для образования новых биополимеров и органелл в случае голодания и недостатка энергии.

 

Аутофагия сопровождает жизнедеятельность любой нормальной клетки в обычных условиях. Однако чрезмерная аутофагия может приводить к клеточной смерти. В настоящее время аутофагия рассматривается как один из видов программируемой клеточной смерти наряду с апоптозом и некроптозом.

История исследований и Нобелевская премия 2016

Термин «аутофагия» для способа доставки цитоплазматического материала клетки в лизосомы с целью последующей деградации ввел в 1963 году бельгийский биохимик Кристиан де Дюв, первооткрыватель лизосом. Лизосомы — это клеточные органеллы, содержащие множество гидролитических ферментов, работающих в кислой среде. Впоследствии было обнаружено, что в процессе аутофагии в цитоплазме сначала образуются аутофагосомы — пузырьки, окруженные двухслойной мембраной, содержащие часть цитоплазмы и клеточные органеллы (митохондрии, рибосомы, фрагменты эндоплазматического ретикулума). Аутофагосомы далее сливаются с лизосомами, в образовавшихся при этом аутолизосомах происходит деградация макромолекул и органелл в результате действия лизосомных ферментов — гидролаз. Де Дюв получил Нобелевскую премию в 1974 году «за открытия, касающиеся структурной и функциональной организации клетки».

Лауреат Нобелевской премии 2016 года Ёсинори Осуми начал исследование аутофагии в дрожжевых клетках и с помощью генетического подхода обнаружил полтора десятка генов, инактивация которых приводила к дефектам в образовании аутофагосом. Эти гены были клонированы и секвенированы. Исследование функционирования белковых продуктов этих генов привело в дальнейшем к выяснению молекулярных механизмов индукции, протекания и регуляции аутофагии. Эти гены по современной номенклатуре называются ATG (Autophagy-related Genes). В настоящее время открыто уже более тридцати генов ATG. Осуми показал, что аутофагия — это действительно запрограммированный процесс, то есть процесс, который кодируется в геноме. Если мутировать или отключить важные для аутофагии гены, то аутофагии происходить не будет.

Между гомологичными генами дрожжей и млекопитающих есть существенное сходство. Белковые продукты этих генов отличаются небольшим количеством аминокислотных замен. Если какой-то ген у дрожжей отвечает за аутофагию, то, скорее всего, похожий ген у животных и человека будет выполнять подобные функции. Генетику аутофагии было проще исследовать в дрожжевых клетках. Но параллельно с изучением механизмов аутофагии у дрожжей в лаборатории, возглавляемой Ёсинори Осуми, были обнаружены гомологи ряда дрожжевых генов ATG в клетках млекопитающих. Исследование функционирования белков млекопитающих, кодируемых этими генами, показало, что молекулярные механизмы аутофагии высококонсервативны у эукариот, то есть мало отличаются у таких эволюционно далеких организмов, как дрожжи и человек.

В лаборатории Ёсинори Осуми при изучении белка LC3 млекопитающих, гомолога дрожжевого белка ATG8, были обнаружены процессированная (укороченная) и липидированная формы белка — LC3-I и LC3-II соответственно. Эти формы в настоящее время стали популярными маркерами аутофагосом и индикаторами аутофагии. Далее была создана трансгенная мышь, экспрессирующая рекомбинантный белок, состоящий из LC3 и зеленого флуоресцирующего белка GFP. Это позволило легко визуализовать аутофагию с помощью флуоресцентной микроскопии и изучить кинетику и интенсивность аутофагии в разных органах мыши при голодании. В лаборатории Ёсинори Осуми была также впервые создана мышь с нокаутированным ATG геном. Гомозиготные мышата с нокаутированным ATG5 рождались нормально, но погибали в течение 24 часов после рождения. Это показало, что аутофагия существенна для неонатального развития у млекопитающих. Созданные в лаборатории Ёсинори Осуми трансгенные по GFP-LC3 и одновременно нокаутированные по ATG5 мыши успешно используются мировым научным сообществом для изучения физиологического значения аутофагии у млекопитающих. Ёсинори Осуми также принял участие в идентификации гомологов генов ATG у высших растений и в демонстрации их участия в аутофагии, что еще раз подтвердило консервативную и фундаментальную роль аутофагии у эукариот.

Типы и механизмы аутофагии

Существует три типа аутофагии: макроаутофагия, микроаутофагия и шаперон-зависимая аутофагия. При микроаутофагии мембрана лизосомы образует впадину, в которую попадает часть цитоплазмы, а затем эта впадина замыкается, образовавшийся пузырек транспортируется внутрь лизосомы, где происходит деградация его содержимого. При шаперон-зависимой аутофагии комплексы дефектных белков с шаперонами попадают в лизосомы при участии специфических мембранных рецепторов.

Ёсинори Осуми получил Нобелевскую премию за исследования макроаутофагии, которую обычно называют просто аутофагией. Под действием сигналов, инициирующих макроаутофагию, образуется так называемый фагофор, который состоит из липидной мембраны и ряда белков, кодируемых генами ATG или гомологами генов ATG. С помощью сложной системы регуляции к фагофору привлекаются новые ATG-белки, собираются мультикомпонентные комплексы, мембрана растет, и образуется незамкнутая структура, по форме напоминающая шапочку, которая окружает часть цитоплазмы (см. рисунок). Затем двухслойная мембрана замыкается, и внутри получившегося пузырька, называемого аутофагосомой, оказываются макромолекулы и органеллы (рибосомы, митохондрии, фрагменты эндоплазматического ретикулума). Образовавшаяся аутофагосома сливается с лизосомой и образует аутофаголизосому, внутри которой происходит деградация макромолекул и органелл. В этом процессе участвуют белковые продукты более 30 генов ATG, существенная часть которых была открыта в работах Ёсинори Осуми.

Аутофагия и клеточная смерть

Аутофагия считается одним из видов программируемой клеточной смерти, но сведения о смерти от аутофагии достаточно противоречивы. Есть многочисленные данные о том, что аутофагия играет защитную функцию при неблагоприятных условиях, то есть пытается спасти клетку от смерти. При этом полагают, что чрезмерная аутофагия может привести к клеточной смерти. Однако не всегда исследователи различают смерть, которая сопровождается аутофагией, и смерть, для которой аутофагия является причиной.

Международное сообщество выработало три критерия аутофагической клеточной смерти. Во-первых, клеточная смерть должна происходить без признаков апоптоза, основного вида программируемой клеточной смерти. Не должно быть активации каспаз, конденсации хроматина, характерной фрагментации ДНК. Во-вторых, должна усиливаться аутофагия, то есть должно повышаться количество аутофагосом и аутолизисом, уровень аутофагических маркеров (процессинг LC3, например). И, наконец, третий критерий состоит в том, что мутирование генов, которые необходимы для аутофагии, или подавление ATG-белков с помощью фармакологических ингибиторов должно предотвращать клеточную смерть. Эти три критерия необходимы для того, что мы называем истинной смертью от аутофагии. В реальности смерть клеток часто сопровождается аутофагией, но таких случаев, где было бы доказано, что аутофагия является настоящей причиной смерти, очень мало.

 

Значение аутофагии для медицины

Аутофагия играет важную роль при ряде заболеваний, включая канцерогенез и нейродегенеративные болезни. Роль аутофагии в канцерогенезе противоречива. С одной стороны, процесс аутофагии способствует выживанию опухолевых клеток, выступая промотором формирования опухолей. С другой стороны, существует достаточно доказательств, что аутофагия может стать супрессором развития новообразований. По-видимому, аутофагия играет супрессорную роль в развитии опухолей на ранних стадиях клеточной трансформации, а для уже сформировавшихся опухолей аутофагия выполняет защитную функцию, придавая ее клеткам устойчивость к химиотерапии, что приводит в конечном итоге к быстрой прогрессии заболевания.

В настоящее время активно идут клинические исследования ингибиторов аутофагии, использование которых в терапии злокачественных новообразований представляется перспективным. Но надо учитывать, что эти ингибиторы могут быть эффективны на одной стадии рака и работать в противоположном направлении на другой стадии. Понимание молекулярных механизмов активации и ингибирования аутофагии, а также механизмов ее регуляции может послужить основой для разработки новых лекарственных препаратов и повышения эффективности методов лечения злокачественных новообразований.

С помощью аутофагии клетка избавляется от дефектных белков и органелл. Особенно это актуально для неделящихся долгоживущих клеток, таких как нервные клетки. При нейродегенеративных заболеваниях в нейронах накапливаются агрегаты неправильно свернутых белков, например бета-амилоида при болезни Альцгеймера и альфа-синуклеина при болезни Паркинсона. Для правильной работы аппарата аутофагии необходим баланс между образованием аутофагосом и их деградацией в лизосомах. Нарушение этого баланса приводит к гибели нервных клеток. Показано, что повышенная аккумуляция аутофагосом в нейронах ассоциирована с нейродегенеративными заболеваниями (болезнями Альцгеймера, Паркинсона, Хантингтона). К этим же заболеваниям приводят мутации ATG-генов. Таким образом, выяснение механизмов регуляции аутофагии необходимо для борьбы с нейродегенеративными заболеваниями.

Дальнейшие исследования, открытые вопросы

Как в любой области молекулярной и клеточной биологии, в исследованиях аутофагии существует много вопросов, на которые пока ответ не дан. На самом деле механизмы аутофагии поняты не полностью. Необходимы исследования, направленные на изучение регуляции аутофагии. В будущем, наверное, будут открыты новые молекулы, которые регулируют этот процесс. Ученые разработают лекарства, которые ингибируют аутофагию или, наоборот, ее усиливают, и исследуют, насколько эти лекарства важны для лечения различных болезней. Знание молекулярных механизмов, как правило, открывает возможности для прикладных работ.